Navigation Bar

Introduction **Objectives** Water Quality Slides Suggested Reading Tests of Knowledge Copy of Quiz

OOPERATIVE

ER GARDET

Bedford Extension Master Gardeners

Water Quality and Conservation

Virginia Tech · Virginia State University

This module was developed by Phyllis Turner, PhD, Extension Master Gardener

All Rights Reserved © 2017; Updated 11/2023

Welcome to 'Water Quality'

Read Chapter 17, in your Master Gardener Handbook before viewing these slides.

- Browse the Suggested Readings at the end of these slides. They contain online sources that will be helpful for your learning.
- The Test Your Knowledge section is for fun and review
- When you are ready, take the quiz, you can print out a copy by clicking on "Printable Copy of Quiz" on the first slide to get a copy to work on

Welcome to What we water About Water duality This is an interactive program that will help you learn about Virginia's water resources, how water quality is measured and what the indicators

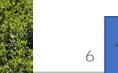
mean.

What I Will Learn in This Module (Objectives)

- 1. Description of run-off and leaching
- 2. Point and non-point sources of pollution
- 3. Water quality indicators
- 4. Chemical pesticides and their impact on water quality
- 5. Guidelines for proper management of chemicals used in and around the home to improve the quality of water supply

INTRODUCTION

We all need clean water. We need it not only for personal use, but also for:


Virginia Cooperative Extension Virginia Tech • Virginia State University

Manufacturing



Water quality refers to the condition of the water. How water is used determines what the condition needs to be.

Photo credi

Drinking water must be in better condition (cleaner) than water used for swimming and fishing.

However, water used for swimming and fishing must be clean enough to protect the health of people and fish.

Photo credit

Regardless of how water is used, good water quality is a must. However, nearly everything we do affects the quality of water.

Vehicles, industry and natural events create air-borne particles and gases that enter waterways with dust, rain and snow.

Traffic Northern VA. Photo credit

Virginia Cooperative Extension Virginia Tech • Virginia State University

Sewage treatment adds nutrients and other pollutants to waterways.

> Agriculture and yard care produces sediment, nutrient and pesticide

Photo credit

Many types of chemicals can enter rivers, lakes and groundwater through improper use and

storac

- Motor oil and other automotive chemicals can enter waterways from parking lots and highways.

Photo credit There are many sources of water pollution. Pollution that originates from a specific place is called POINT SOURCE POLLUTION. This includes outflows from sewage plants, factories, landfills, feed lots and underground storage tanks.

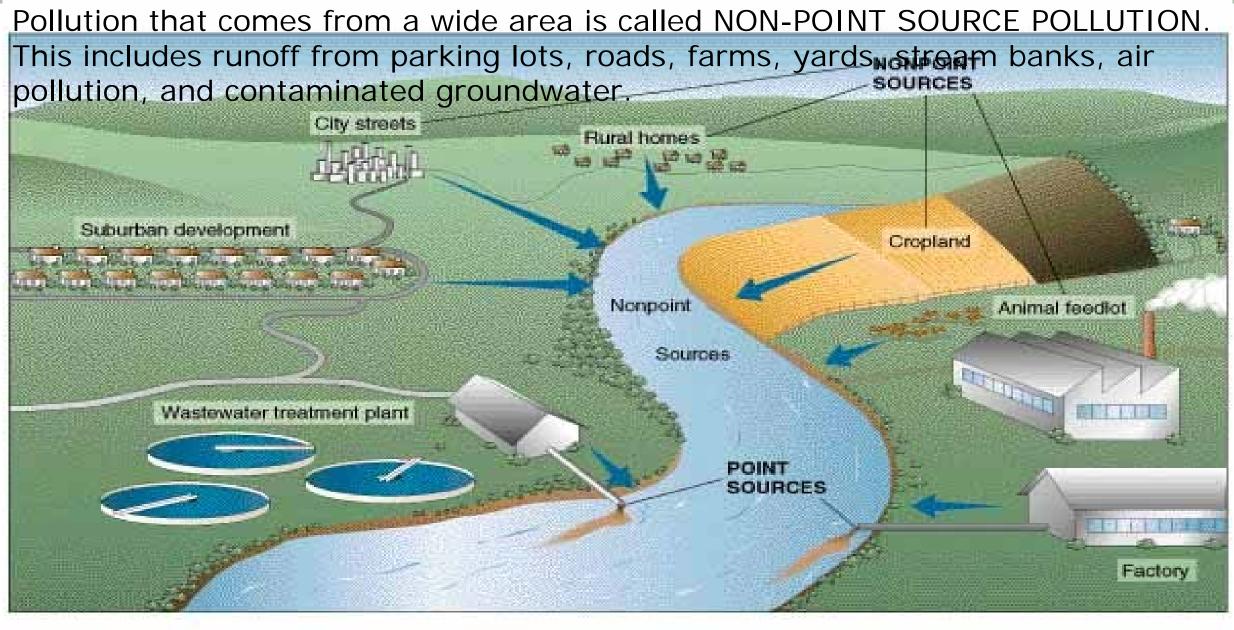


Photo credit

Water pollution can also originate from natural sources. Mineral-rich soils, natural oil seepage, coastal saltwater, wildlife and natural disasters can all affect water quality.

There are many types of water pollution. Some of these include:

• Petroleum Products

• Toxic Wastes

- Nutrients
- Sewage
- Solid Wastes
- Pesticides

Virginia Cooperative Extension Virginia Tech • Virginia State University

- Bacteria
- Sediments
- Heated Water
- ... And others

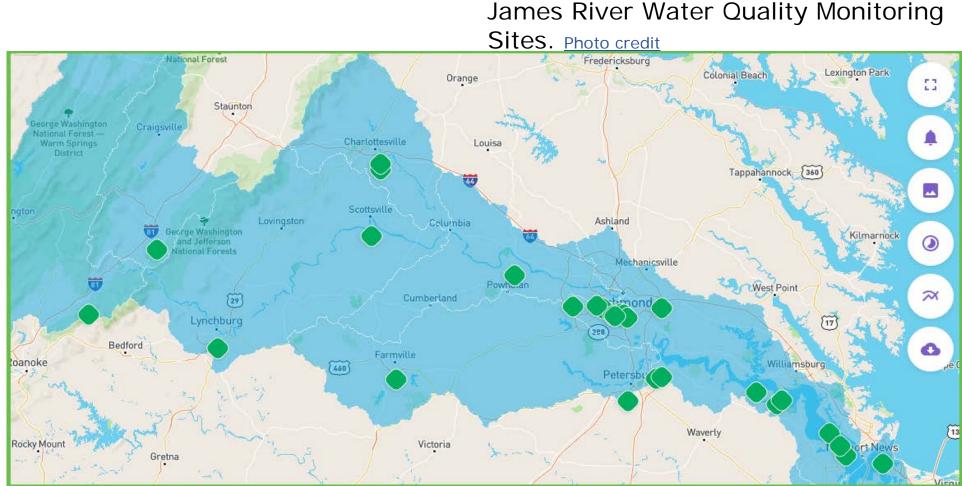
16

The most widespread types of pollution are sediment, nutrients and bacteria.

Erosion moves soil into waterways. The soil creates suspended sediment that blocks sunlight, smothers aquatic life and adds contaminants. Primary plant nutrients include nitrogen, phosphorus and other elements. Excess nutrients increase algal growth. The algae die and the resulting decay consumes oxygen.

Virginia Cooperative Extension Virginia Tech · Virginia State University River pr

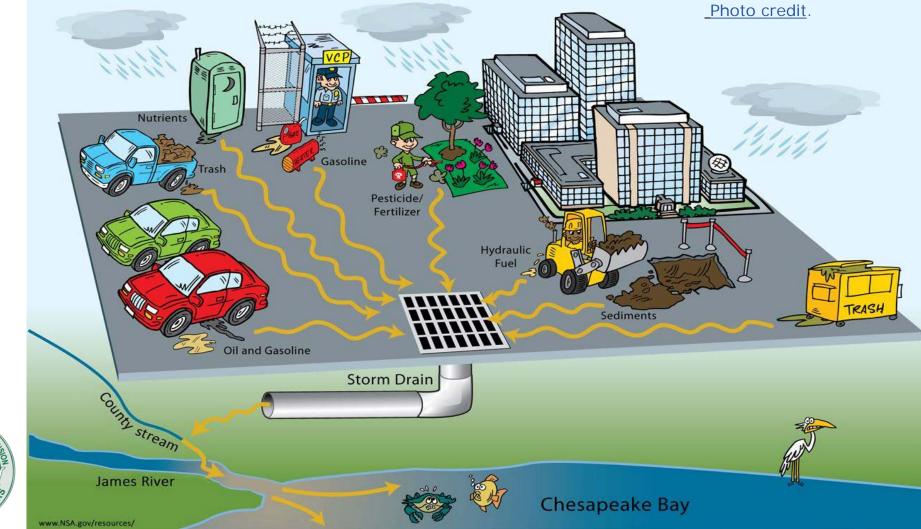
Algae in North Fork of Shenandoah River. Photo credit

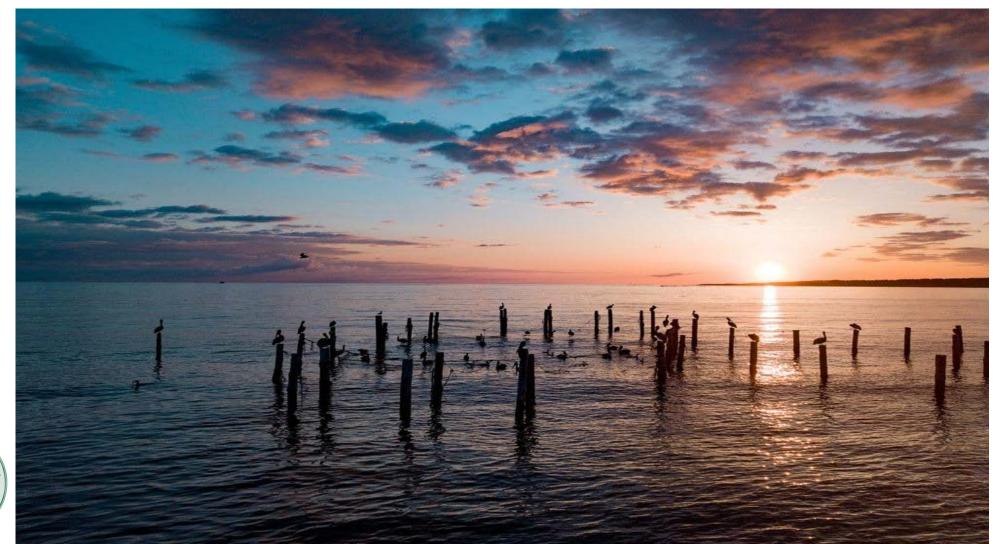


Shenandoah Riverkeeper identified 73 herds of cattle with direct access to the North Fork, South Fork, and mainstream Shenandoah River in 2018

> Partially treated sewage, farm runoff and animal wastes are major sources of nutrients and bacteria.

Photo credi

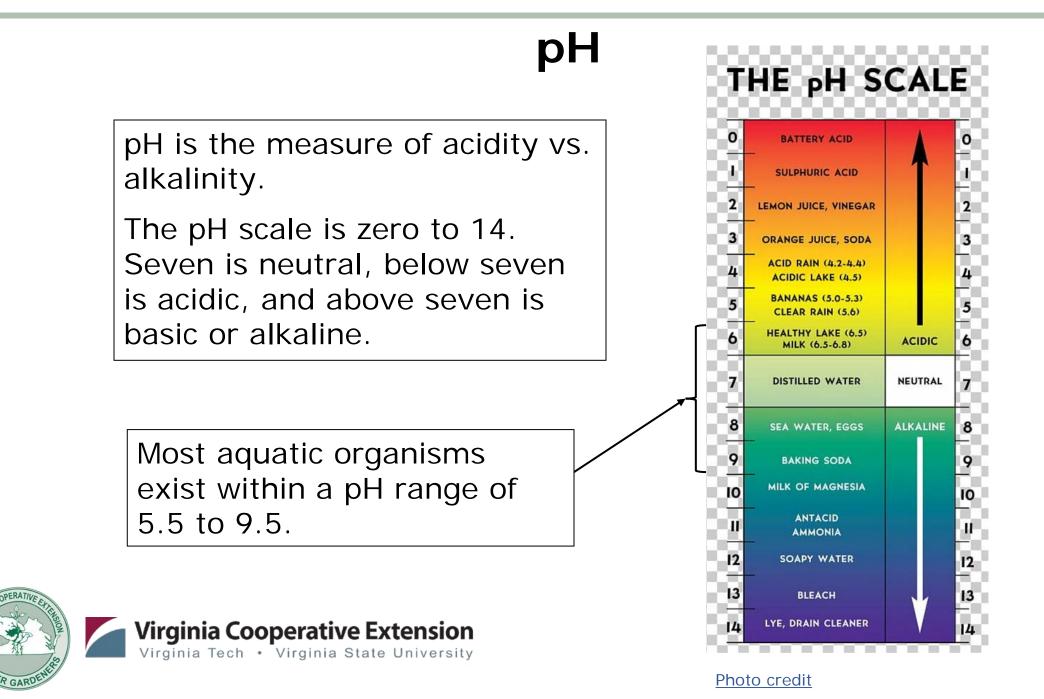

Bacterial contamination is becoming a chronic problem in many waterways. The most prevalent sources are poorly treated sewage and wildlife, pet and livestock waste.



20

In addition, petroleum products, farm and garden chemicals, heavy metals and other toxic substances can severely affect water quality.

An important concern is the long-term exposure to low levels of these pollutants. Cancer is a possible risk. However, these substances may also affect hormone and immune systems. There are many chemical measures used to determine water quality. This program will help you learn about important water quality indicators.


<u>Photo</u> <u>credit</u>.

Water Quality Indicators

- pH
- Phosphate
- Salinity
- Sediment
- Temperature
- Toxic Chemicals
- Pesticides

- Dissolved and suspended solids
- Turbidity
- Ammonia
- Bacteria
- Hardness
- Nitrogen

PHOSPHATE

- Phosphate is an important plant nutrient used for root growth
- Phosphate binds to soil particles and is not usually water soluble
- Excess phosphate can cause algae blooms and reduce water quality
- Chicken and swine production are a major source of phosphate pollution

SALINITY

Salinity refers to the salt concentration in water, mostly sodium chloride

Salinity is measured in parts per thousand (ppt) or grams per liter

Ocean water has a salinity of about 35 ppt

Virginia Cooperative Extension Virginia Tech · Virginia State University

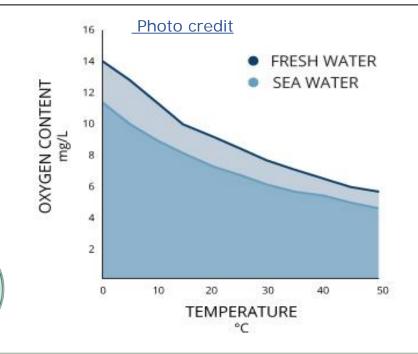
Dredging at Virginia Beach after a hurricane, 2019, was halted due to sea turtle migration. Photo credit

SEDIMENT

Sediment is the "conglomerate of materials, organic and inorganic, that can be carried away by water, wind or ice. Erosion causes loose soil to enter waterways." Sediment can be carried downstream by water flow (*Photo Credit: NASA Visible Earth, via USGS*)

Suspended sediment blocks sunlight and reduces dissolved oxygen.

Heavier sediment particles quickly settle out of the water.


Virginia Cooperative Extension Virginia Tech • Virginia State University

TEMPERATURE

Temperature affects the oxygen-carrying capacity of water. Dissolved oxygen concentrations are affected by diffusion and aeration, photosynthesis, respiration and decomposition

Rapid temperature change and temperature extremes can stress aquatic organisms. Dissolved oxygen depletion is the most common cause of fish kills

As the water warms, the amount of dissolved oxygen decreases.

Hypoxic, so called 'Dead Zones' are areas where the oxygen concentration is so low that animals can suffocate and die. The largest hypoxic zone in the U.S. and the second largest worldwide forms in the northern Gulf of Mexico adjacent to the Mississippi River from runoff from farms and cities that drain into the Mississippi River.

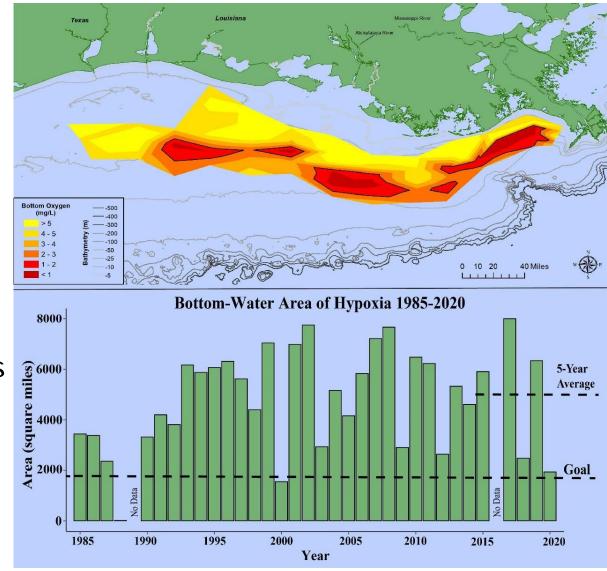


Photo credit

Virginia Cooperative Extension Virginia Tech • Virginia State University

30

TOXIC CHEMICALS

Toxic chemicals usually come from industry and energy production.

The effects are often not known until years after they have entered the environment.

Toxic chemicals include heavy metals (lead, mercury), organic compounds (DDT, PCB), inorganic substances (arsenic) and others.

Many common household chemicals are toxic to aquatic life (cleaning fluids, paints, thinners, polishes, etc.).

PESTICIDES

Pesticides are rated by a number of factors:

- How well they adhere to soil
- How water soluble they are
- How long they last in the environment
- How they affect organisms

Some types of pesticides include:

HerbicidesInsecticidesFungicidesAlgicidesMiticidesRodenticides

Virginia Cooperative Extension Virginia Tech • Virginia State University

DISSOLVED SOLIDS

Dissolved oxyger

7.80

Center Transect

Based on minimum recorded oxygen value

Natural sources of dissolved solids in groundwater include bedrock and salt deposits; additional sources include on-site sewage systems, runoff and wastewater from urban, industrial, or agricultural areas, runoff from roads and wastewater from extraction activities such as coal mining and natural gas drilling.

Suspended sediment and dissolved substances reduce the amount of oxygen water can carry. As suspended sediments settle, they

can smother bottom (benthic) organisms.

A large part of the Chesapeake Bay has low dissolved oxygen.

Virginia Cooperative Extension Virginia Tech · Virginia State University Total Dissolved Liquids in Household Water

Data from the first August cruise: August 1-15, 2018. Courtesy MD DNR

Patuxe

Photo credit

TURBIDITY

- Turbidity refers to water clarity
- Sediments suspended in the water increase turbidity

- Clay and silt particles produce most of the turbidity
- Turbidity is related to hardness
- High turbidity prevents light from reaching aquatic life

Virginia Cooperative Extension Virginia Tech • Virginia State University Big Otter River at U.S. Route 460 in Bedford County, Virginia, June 15, 2013. <u>Photo credit</u>

AMMONIA

- Ammonia is produced by the decay of protein matter and animal waste.
- Ammonia is toxic to most aquatic life, especially at high pH.
- Bacteria readily convert ammonia to nitrate (a plant nutrient).
- Ammonia is a form of nitrogen.

35

BACTERIA

- Most bacteria are important in nutrient and other biological cycles.
- Excess nutrients cause algal blooms. As algae die and decay, the high bacterial load rapidly consumes dissolved oxygen.

Fish kill due to low dissolved oxygen. Photo credit

Virginia Cooperative Extension Virginia Tech • Virginia State University

36

BACTERIA

Certain types of bacteria indicate animal and human waste pollution.

Escherichia coli are coliform bacteria found in the intestines of warm-blooded organisms. Most strains are harmless but one *E. coli* strain can cause severe diarrhea and kidney damage.

Virginia Cooperative Extension Virginia Tech • Virginia State University

HARDNESS

Hardness refers to the concentration of calcium and magnesium in water.

Hard water has high concentrations of these elements. Soft water has low concentrations.

Water hardness often originates from limestone.

Excess hardness causes quality problems.

NITROGEN

Nitrogen makes up 80% of the atmosphere

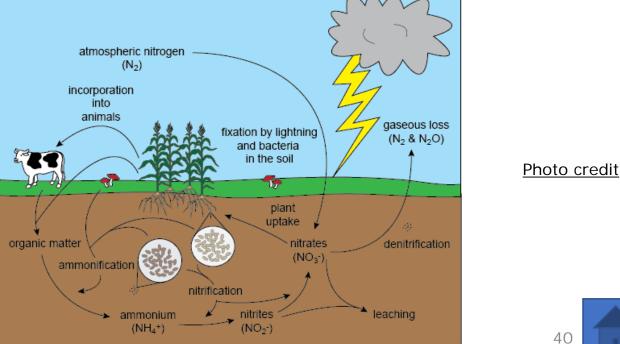
Nitrogen is a primary plant nutrient

Nitrogen is water soluble and moves easily from surface to groundwater

Photo credit

Excess nitrogen causes algal blooms that reduce water quality

Virginia Cooperative Extension Virginia Tech • Virginia State University


Photo credit: usgs.gov

Nitrogen Cycle

Under normal conditions, the nitrogen cycle keeps the amount of available nitrogen in balance with the demands.

However, excessive use of fertilizers and nutrient-rich sewage release have created a surplus of nitrate in waterways.

The result has been excess algae and bacteria with reduced dissolved oxygen.

40

Valuable Water Quality Web Sites (Click on bars to go to sites)

USGA Water Information Pages

US Environmental Protection Agency

Chesapeake Bay Program

PARTS PER MILLION

Most dissolved substances found in water are measured in parts per million (ppm) or even smaller amounts.

This means that for every one million parts (units) of water there is a certain number of parts of the substance.

Virginia's Anti-Degradation Policy

Virginia has a constitutional mandate to protect the quality of its natural resources (Virginia Constitution, Art. XI, Sec. 1). In keeping with this mandate the state has adopted an anti-degradation policy which requires the protection of existing high quality surface waters (lakes, rivers, streams, etc.) and groundwater. The policy also provides for the restoration of all other waters of the state to a condition that would permit all reasonable uses (VA. Code Sec. 62.1-44.4(2). The Virginia Water Control Board is responsible for setting groundwater quality standards.

You can help by adopting effective Best Management Practices for your home, farm, school and community.

VIRGINIA'S FORESTRY BEST MANAGEMENT PRACTICES FOR WATER QUALITY

Field Guide

Click on image to find this document. Photo credit

Apple Orchard Falls, Sedalia. Photo credit

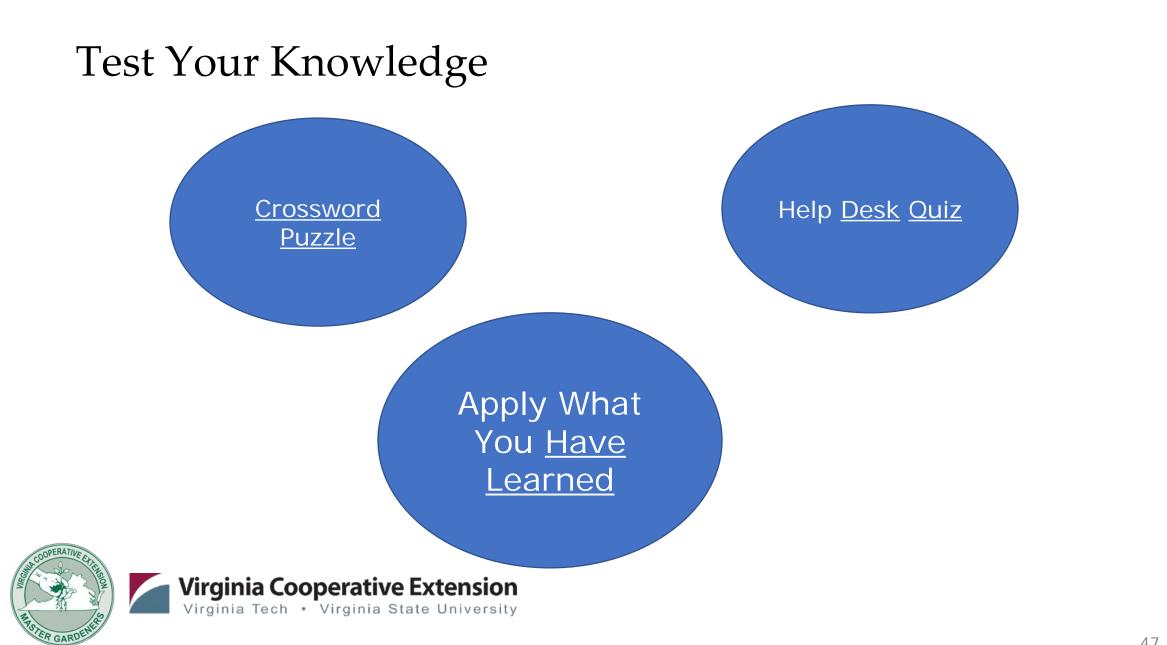
Steps in Designing a Water-wise Landscape

- Group plants with similar watering needs together (hydrozones)
- Limit lawns to the appropriate size for your needs (replace some lawn with trees, shrubs, perennials)
- Limit areas with high irrigation needs
- Reduce runoff and erosion
- Provide water-wise maintenance and irrigation practices

Suggested Readings

A Primer on Water Quality

Groundwater Quality


Home Water Quality

Pesticides and Aquatic Animals: A Guide to Reducing Impacts on Aquatic Systems

Virginia's major waterways

Apply What You Have Learned

- 1. Identify one potential source of water pollution on your property
- 2. Develop a hydrozone in your yard / garden
- 3. Have the water going into your house tested for hardness and pH

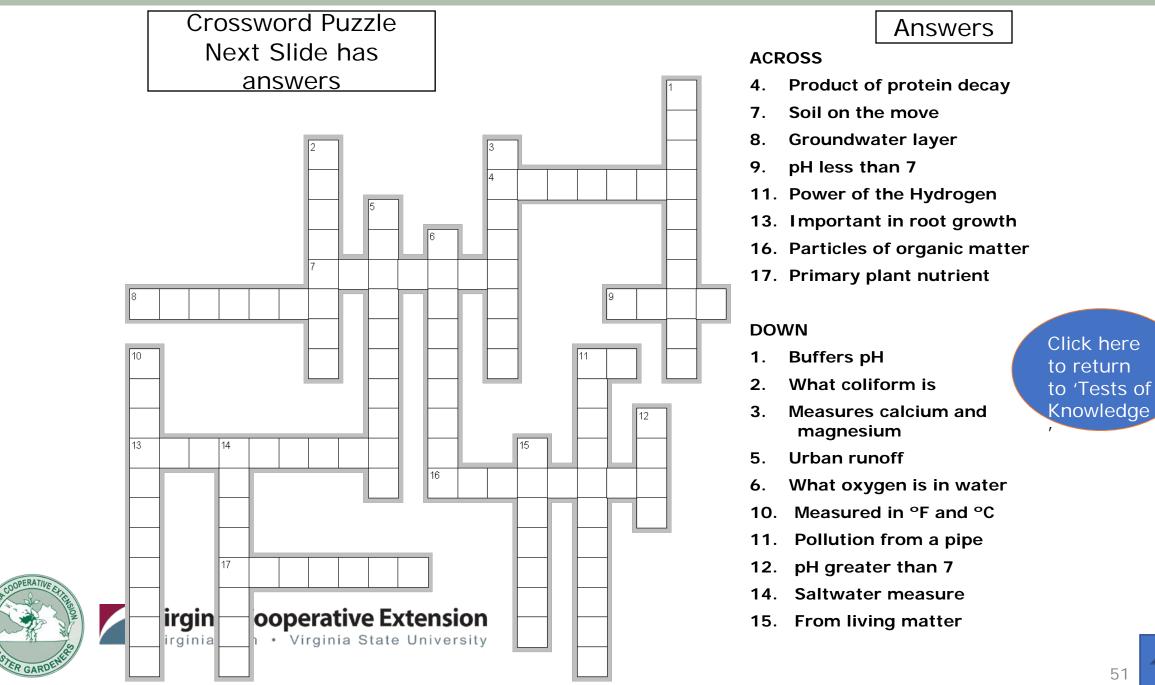
Virginia Cooperative Extension Virginia Tech • Virginia State University Click here to return to 'Test <u>your</u> <u>Knowledge</u>'

Help Desk Quiz Answers on next slide

- 1. What steps can I take to reduce the amount of water I use in my gardens and flower beds?
- 1. How much should I water my vegetable garden?
- Can I use "gray" water (or household waste water) for my garden plants?

Virginia Cooperative Extension Virginia Tech • Virginia State University Click here to return to 'Test <u>Your</u> <u>Knowledge</u>'

Help Desk Quiz


1. What steps can I take to reduce the amount of water I use in my gardens and flower beds?

Answer: Group plants together by their water needs; limit the amount of lawn you have (plant trees with large mulch areas around them or perennial flower beds that require less water); reduce runoff; use drip irrigation to water plants; if plants will tolerate shade, plant them in the shade to reduce water requirements; use mulch and ground cover; add organic matter to planting areas

- 2. How much should I water my vegetable garden? Answer: One inch per week either from rain or irrigation.
- Can I use "gray" water (or household waste water) for my garden plants? Answer: Yes, but with care. No more than about ½ gallon per square foot per week. The greatest danger is from the salts in soaps.

Click here to return to 'Test <u>Your</u> <u>Knowledge</u>'

Created with EclipseCrossword --- www.eclipsecrossword.com

Crossword Puzzle - Answers

ACROSS

4.	Product of protein decay	AMMONIA
7.	Soil on the move	EROSION
8.	Groundwater layer	AQUIFER
9.	pH less than 7	ACID
11.	Power of the Hydrogen	рН
13.	Important in root growth	PHOSPHATE
16.	Particles of organic matter	DETRITUS
17.	Primary plant nutrient	NITRATE

DOWN

	1.	Buffers pH	ALKALINITY
	2.	What coliform is	BACTERIA
	3.	Measures calcium and magnesium	HARDNESS
	5.	Urban runoff	STORMWATER
	6.	What oxygen is in water	DISSOLVED
	10.	Measured in °F and °C	TEMPERATURE
	11.	Pollution from a pipe	POINTSOURCE
	12.	pH greater than 7	BASE
Virginia	14.	Saltwater measure	SALINITY
-		From living matter	ORGANIC

Click here to return to 'Tests of Knowledge'

COPY OF WATER QUALITY QUIZ

- 1. Water ______ refers to the condition of the water.
- a. cleanliness b. solubility c. flow d. quality
- 2. Runoff from wide areas such as parking lots, farms, yards, stream banks, etc. is called non-point source pollution.a. True b. False
- 3. Chemical-laden water coming out of a pipe leading out of a factory illustrates an example of ______ pollution.a. turbidity b. inflorescence c. point source d. erosion
- 4. One water contamination mechanism is when surface water leaches a pollutant into ground water
- 5. In Virginia, water quality standards **require** an antidegradation policy: True b. False
- 6. Most dissolved substances found in water are measured in parts per million (ppm) or smaller amounts.a. True b. False
- 7. Temperature affects the oxygen-carrying capacity of water. a. True b. False
- 8. A water-wise landscape design utilizes water effectively by the following methods EXCEPT
 a. reducing runoff erosion b. increasing lawn areas c. grouping plants with similar water needs
 d. limiting areas of high irrigation
- 9. _____ refers to water clarity.
- a. Dissolved solids b. Benthic organisms c. Turbidity d. Chemical processes
- 10. Water quality is a fixed thing and does not depend on the use of the water. a. True b. False
- 11. All strains of E coli bacteria are harmful to the environment. a. True b. False

The End

This module was adapted with permission

Issued in furtherance of Cooperative Extension work, Virginia Polytechnic Institute and State University, Virginia State University, and the U.S. Department of Agriculture cooperating. Mark McCann, Director, Virginia Cooperative Extension, Virginia Tech, Blacksburg; Alma Hobbs, Administrator, 1890 Extension Program, Virginia State, Petersburg.

